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Problem 1

la

For LTE, we use the Saha equation for hydrogen:
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where ny is the density of neutral hydrogen and n, is the density of free protons. Using ny

= n — n, and setting the right-hand side of the equation to a(7’), we have
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This can be solved using the quadratic equation by rearranging to

nZ + an, — an = 0. (3)
Solving for n, and dividing by n gives us the ionization fraction:
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(the quadratic also gives us a solution with a negative sign between the two terms, but we

know xyy must be a positive number, so we can ignore it). Plugging in numbers gives



T = 8.19 x 107°. (5)

The optical depth is the density of electrons multiplied by the scale height and the electron-

scattering cross-section:

Tes = .THHTLO'TH =15.44 x 1075. (6)
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To get the free-free optical depth, use the free-free absorption coefficient and multiply by a

characteristic scale height, H = 100 km.
T8 = agAx ~ agH, (7)
where we have o from lecture:
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ag = 3.7 x 10822 (1 — e /Ty ge (8)

n; = ne = xunn, we take gg ~ 1, and Z = 1 for hydrogen. v = ¢/)¢. This gives
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= 3.7 x 10° (1 —eM/meTy —11.54 x 107°. (9)
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We have the bound-free cross-section from the notes,
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where v is still ¢/Ag and v; is the frequency required for ionization:
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~ 3.29 X 1015§Hz. (11)



Ry is one Rydberg = 13.6 eV. Note that in these two equations, n is the energy level of the
atom. If v < y;, the photons do not have enough energy to ionize the hydrogen, and the
cross-section is zero. v = 6 x 10 Hz. For n = [1,2,3], v; = [3.29,0.82,0.37] x 10" Hz ,
so 7 = 0 for atoms in n = 1 and n = 2 levels, but for n = 3 we have to use the formula.
However, we first need to calculate the fraction of neutral atoms that will be in the n = 3
state. We use the partition function and assume that all atoms are in the ground state of

one of the first two excited states:
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with F; = Ry(1 —1/n?) and g; = 2n?. The density we get is nz = 8.27 x 10712n, so we plug

this in for

Toe = ngopeH =|3.03 x 1074, (13)
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We can treat this case as similar to normal hydrogen ionization, except this time y = 0.75
eV = 1.2 x 107'2 ergs. Let’s assume basically all hydrogen atoms are either neutral or are

H™ ions (since the ionization fraction we found was very small) and use Saha:

3/2
o _ g0 2 (2mmeks TN g 14)
NE-  §— Ne h?

where the ratio of the degeneracies is about 1. Substituting n. = rgpng, we get
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Now assume the neutral hydrogen is in the ground state (as we saw, most of it is). Again
-3
use opp ~ 6 x 1018%(5) . v; = 1.8 x 10'4 Hz this time, and v = 6 x 10" Hz, so the

cross section is nonzero. Plugging in numbers, we get



ope = 1.66 x 10" ¥em? — 7 = oy H = 0.0067. (16)

This optical depth is small, but it still clearly dominates. This opacity is about two orders

of magnitude or more than each of the other sources of opacity.

Problem 2
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We have the cooling time for hydrogen from class:

te =9 x 1017 2n tsec. (17)

The problem says the mass of hydrogen gas is on the order of the dark matter mass, so let’s

assume M is the mass of hydrogen. This gives us n; = mﬂp 47T3R3. Setting t. = tqyn gives the
expression
GM1 2 drmy, R3
— ~ 9 x 101072 | 2 18
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Doing algebra and using the definition of the virial temperature to get M ~ kgT,R/Gm,,

we find that the temperature cancels and we get the expression for R,:
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so we indeed find that the radius is on the order of 80 kpc.

=2.16 x 10*cm = 70.2kpc, (19)
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Free-free emission is dependent on the amount of free electrons and protons present in the
gas. Therefore, we need to calculate the fraction of ions given a certain temperature and the

assumption of CIE (collisional ionization equilibrium):
nuiCic = NHIA AN, (20)
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From this we can derive that
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And we can write
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These will be important when writing out the electron and proton densities in what follows.

The emmission is given by

g = 1.4 x 107 Z2nenu T % g (23)

We have already calculated nj; above. Assume that gg ~ 1, set Z = 1 for Hydrogen, and

convert to dimensionless units. Then
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For bound-free emission, again the proton and electron fractions are important. The emission
is
L
bt = 3.25 X 1013nenikBT(—) (25)
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Convert to dimensionless units. Then
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For Lyman-a emission,
€Ly—a ~ hV0n2A21 = hl/on1012 (27)

where 14 is the frequency associated with the Lyman-« transition, As; is the rate of transi-

tions from n = 2 — n =1, and (', is the rate of collisional excitation fromn =1 —n = 2.



Using the formulae derived in class, we can rewrite (5 in the final expression to get
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where f &~ .5 is the oscillator strength of the Lyman-« transition and n, is the fraction of
neutral Hydrogen atoms in the ground state (assmue n; =~ n;). Converting into dimensionless
variables, we have
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To calculate the fraction of neutral Hydrogen, write

1
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So putting these together,
€ 1 ho\ "%/ T\ 7 erg cm?®
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The probability of absorption into the thermal pool is just the probability of collisional

de-excitation. We can write this as
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where Ay = 6.3 x 10%s™! (from NIST) and at T = T}, n, = lem ™3,
Cy =5 x 107%s71 (33)

Plugging these values into the above equation, we have

SINY (34)
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So there is a very small probability that absorption into the thermal pool will take place.



2d

We solve the following balance equations

77,5056 = n6R65 (35)
n6067 = n7R76 (36)
Noxy = N5 + Ng + ny (37)

First divide the latter equation by ng and invert to get
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Now plug in the relations from above to arrive at 6 _ [ﬂ + 1+ ﬂ]
Noxy CV56 R76
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Look at the Grotrian diagram for the OVI ion. You can see that the first excited state is a
short energy step above ground state (AE = 12eV). From this we can confidently say that
mostly the ground and first excited states will be populated. The cooling will therefore be
dominated by the transitions n =2 —n = 1.

For OVII, the lowest energy level transition requires a A = 22 A photon to excite the electron
to that level,, or a gas temperature of AE/k = 6 x 10% Kelvins. This is outside of our
temperature range, so we can neglect this temperature.

For OVIII, the lowest energy level transition requires a A = 18A photon to excite the
electron to that level,, or a gas temperature of AE/k = 8 x 10° Kelvins. This is outside of
our temperature range, so we can neglect this temperature.

But a transition for OV only requires a A = 1218A photon to excite the electron to that
level, or a gas temperature of AE/k =1 x 10° Kelvins. Plenty of particles will have enough

energy to impart collisionally to excite this transition.
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Here we derive the cooling function for the line transition of OVII. We assume CIE again.

Start with the expression for emission:

eovi = NaAg1hiyg

(39)

where 14 is the frequency associated with the line transition and n, is the number density

of particles in the excited state of OVI. Assuming collisional de-excitation is a negligible

process. Then

n2A21 =n1C19 = (nOVI - n2)012

Rearranging:

Ng = NovI 1o
Cia + Ao
And recall from section (2d)
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Assuming solar abundances, we can make the following conversion

novi XH,sol novi

Noxy X, oxy,sol TH

where we have defined Xy sol = Moxy /Mot 1 the sun. Thus, finally, we can write
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Putting it all together,
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where
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(44)



for vy corresponding to the line transition,
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Res = 2 x 1078 2%(T/T,)~1/?

for Z=7,

Rrg =2 x 1078 2%(T/T,)~1/?

for Z=6.
The cooling functions from section (2b) and (2f) are plotted in Fig. 1.

Figure 1: Cooling function. Courtesy of J.L. Barnes.
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